Superposition Principle and Sectors in Quantum Logics

S. Pulmannová

Institute for Measurement and Measurement Technique of the Slovak Academy of Sciences, 885 2 7 Bratislava, Czechoslovakia

Received August 23, 1979

The superposition principle and sectors are studied and their properties in some types of logic are derived.

1. INTRODUCTION

Let L be a logic, i.e. an orthocomplemented partially ordered set with the first and last elements 0 and 1, respectively, in which $\forall a_i \in L$ for any sequence $\{a_i\} \subset L$ such that $a_i \le a_i^{\perp}$, $i \ne j$, $i, j = 1, 2, \ldots$ and which has the orthomodularity property: $a \le b(a, b \in L)$ implies that there is a $d \in L, d \le$ a^{\perp} and such that $b = a \lor d$. The orthocomplementation $a \mapsto a^{\perp}$ in L has the following properties: (i) $(a^{\perp})^{\perp} = a$, (ii) $a \le b \Leftrightarrow b^{\perp} \le a^{\perp}$, (iii) $a \vee a^{\perp} = 1$. The elements $a, b \in L$ are disjoint (written $a \perp b$) if $a \le b^{\perp}$. The elements $a, b \in L$ are compatible (written $a \leftrightarrow b$) if there are $a_1, b_1, c \in L$, mutually disjoint and such that $a = a_1 \vee c$ and $b = b_1 \vee c$. We shall also assume that if $a, b, c \in L$ are mutually compatible then $a \leftrightarrow b \lor c$. A map $m: L \rightarrow [0, 1]$ which satisfies $(1)m(1)=1$, $(2)m(\sqrt{a_i})=\sum m(a_i)$ for any sequence $\{a_i\}$ of mutually disjoint elements of L , is a state on L . If m is a state that cannot be written in the form $m = cm_1 + (1 - c)m_2$, where $0 < c < 1$ and m_1, m_2 are distinct states, then m is called a pure state. Let M be a set of states on L and let P be the set of all pure states of L contained in M. If $a \in L$, $m \in P$, define $P_a = \{m \in P : m(a) = 1\}$, $L_m = \{a \in L : m(a) = 1\}$. If $P_a \subset P_b$ implies $a \le b(a, b \in L)$ and $L_{m_1} \subset L_{m_2}$ implies $m_1 = m_2$ $(m_1, m_2 \in P)$, we call (L, M) a quantum logic. Let (L, M) be a quantum logic; then for any $a \in L$, $a \neq 0$ there is an $m \in P$ such that $m(a) = 1$. Indeed, if not, then the relation $P_a = P_0$ implies $a = 0$, a contradiction. Let $L_m^0 = \{a \in L : m(a) = 0\}$. Clearly,

916 Pulmannova

 $L_m = \{a^\perp : a \in L_m^0\}$ and $L_m^0 = \{a^\perp : a \in L_m\}$. A state $m \in M$ is a superposition of the states $p, q \in M$ if $p(a)=0$ and $q(a)=0$ imply $m(a)=0$, or, equivalently, if $p(a) = 1$ and $q(a) = 1$ imply $m(a) = 1$. A set $S \subset P$ is said to be closed under superpositions if it contains every pure superposition of any pair of its elements. If $S \subset P$ is not closed under superpositions, let $\Lambda(S)$ denote the smallest subset of P closed under superpositions and containing S. The set $S \subset P$ is a sector if (i) $S = \Lambda(S)$, (ii) if $p, q \in S$ then there is an $r \in \Lambda({p,q})$ such that $r \neq p, r \neq q$, (iii) if $q \in P, q \notin S$ then $A(\{p,q\}) = \{p,q\}$ for any $p \in S$. We say that the superposition principle holds in (L, M) if $\Lambda({p,q}) \neq {p,q}$ for any $p, q \in P, p \neq q$ (Pulmannová, 1976).

Let C be the set of all elements of L that are compatible with all the other elements, i.e., $C = \{a \in L: a \leftrightarrow b$ for all $b \in L\}$. C is called the center of L. It was shown (Varadarajan, 1962) that C is a Boolean sub- σ -algebra of L . A logic L is called irreducible if its center C is trivial, i.e., if $C = \{0, 1\}$. If the superposition principle holds in a quantum logic (L, M) , then L is irreducible (Pulmannová, 1976). If p is a pure state and $c \in C$, then $p(c) = 1$ or $p(c) = 0$ (Varadarajan, 1968).

The center C of a logic L is discrete if there exists an at most countable set ${c_n}_{n \in D}$ of mutually disjoint elements of C such that C consists precisely of all the lattice sums $\vee \{c_n : n \in \mathbb{Z}\}\,$, where Z is an arbitrary subset of D. The c_n are called atoms of C. If we define L_i = $L[0, c_i] = \{b : b \in L, b \le c_i\}$, then $L_{i,j} \in D$, are irreducible logics $(c_i$ is the first element of L_i). The logic L can be thought of as a direct sum of the irreducible logics L_i . If p is a pure state of L_i , we define \tilde{p} by $\tilde{p}(a) = p(a \wedge$ c_i)($a \in L$). Then \tilde{p} is a pure state on L. Varadarajan (1968) has shown that the set \tilde{P} of all pure states of L can be written in the form $\tilde{P} = \bigcup \tilde{P}_i$, where $\tilde{P}_j = \{\tilde{p}: p \text{ is a pure state on } L_j\}.$ To any state m on L we can find the states m_i on *L*, such that $m(b) = \sum m_i(b \wedge c_i) m(c_i)$, $(b \in L)$ if we set $m_i(b \wedge c_i) =$ $m(b \wedge c_i)/m(c_i), m(c_i) \neq 0$. If $m(c_i)=0$, we set $m_i=0$. Let M_i be the set of m_i for all $m \in M$. If (L, M) is a quantum logic, then (L_i, M_i) are also quantum logics. If the irreducible quantum logics (L_i, M_i) are such that the superposition principle holds in them, then the sets $P_i = \tilde{P}_i \cap M$ are the sectors in P (Pulmannová, 1976).

2. CENTER OF A QUANTUM LOGIC AND **SECTORS**

Let (L, M) be a quantum logic and let C be the (nontrivial) center of L. For $s_1, s_2 \in P$ we set $s_1 \sim s_2$ if $s_1(c) = s_2(c)$ for all $c \in C$. Clearly, \sim is a relation of equivalence. Let $[s]$ denote the equivalence class of P containing $s \in P$.

Theorem 1. If $S \subset P$ is a sector, then $p \sim q$ for any $p, q \in S$.

Proof. Let $p, q \in S$ be such that $p \nless q$. Then there is an element $c \in C$ such that $p(c)=1$ (say) and $q(c)=0$. By the proof of Theorem 3 in Pulmannová (1976) then $\Lambda({p, q}) = {p, q}$, which contradicts the supposition that S is a sector. Hence $p \sim q$.

> *Theorem 2.* Let (L, M) be a quantum logic such that the center C of L is discrete. Let L be the direct sum of $L_{[0,c]} = L_i$, where the quantum logics (L_i, M_i) are such that the superposition principle holds in them. Then for any $p, q \in P$, p and q belong to the same sector if and only if $p \sim q$.

Proof. Let $P_i = \{ \tilde{p} \in P : p \text{ is a pure state on } L_i \}$. Then P_i are sectors in P. Let c_i , $i = 1,2,...$ be the atoms of C. Clearly, $p \sim q$ *iff* $p(c_i) = q(c_i)$ for all *i*. Let $p \sim q$ and let $p \in P_{i_0}$. Then $p(c_{i_0}) = q(c_{i_0}) = 1$ and $p(c_i) = q(c_i) = 0$ for $i \neq i_0$, which implies that $q \in P_{i_0}$, i.e., p and q belong to the same sector P_{i_0} .

An observable on the logic L is a map $x: B(R) \to L$ from the Borel subsets $B(R)$ of the real line R into L such that (i) $x(R) = 1, x(\emptyset) = 0$; (ii) if $E \cap F = \emptyset$ then $x(E) \perp x(F), E, F \in B(R)$; (iii) $x(\cup E_i) = \bigvee x(E_i)$, if $E_i \cap E_j$ $=\emptyset$ for $i \neq j, i, j = 1, 2, ...$ The spectrum $\sigma(x)$ of an observable x is the smallest closed set $F \subset R$ such that $x(F)=1$. An observable x is bounded if $\sigma(x)$ is bounded. The norm of a bounded observable x is defined by $||x|| = \sup \{ |t| : t \in \sigma(x) \}.$ The expectation of an observable x in a state m is $m(x) = \beta m(x(d\lambda))$, if the integral exists.

For a quantum logic (L, M) we define a metric on M by setting $d(p,q)$ = sup $\{|p(x) - q(x)| : x \in X_1\}$, where X_1 is the set of all observables x on L such that $||x|| \le 1$. It can be shown that $||x|| = \sup \{ |m(x)| : m \in M \}$ (Gudder, 1965). From this it follows that $d(p,q) \leq 2$ for any $p,q \in M$. An observable x on L is simple if $\sigma(x) \subset \{0, 1\}$. If $a \in L$, let x_a be the simple observable such that $x_a({1}) = a$. For any state *m* then $m(x_a) = m(a)$.

> *Theorem 3.* Let (L, M) be a quantum logic and let $p, q \in P$ be such that $d(p,q) < 2$. Then $p \sim q$.

Proof. Let $p \nless q$ and let $c \in C$ be such that $p(c) = 1, q(c) = 0$. Let us set $x = x_c - x_c$ ¹. [As x_c and x_c ¹ are compatible, $x_c - x_c$ ¹ exists (Varadarajan, 1968)]. Let *m* be a state on *L*. Then $m(x) = m(x_c) - m(x_c^{\perp}) = 2m(c) - 1$; i.e., $|m(x)| \le 1$, hence $||x|| \le 1$. Then $p(x) - q(x) = p(c) + q(c^{\perp}) = 2$, from which it follows that $d(p,q) = 2$.

Theorem 4. In a quantum logic (L,M) , the equivalence classes $[s], s \in P$ are open-closed sets in the topology induced by the metric d.

Proof. Let p be an element of [s]. By Theorem 3, the set $\{q \in P: d(p,q)\}$ $\langle 2 \rangle$ is contained in [s]. This implies that [s] is open. As the equivalence classes $[s]$, $s \in P$, form a disjoint covering of P, they are also closed.

If the conditions of Theorem 2 are satisfied, then the sectors are open-closed sets in P. Thus Theorem 5 can be considered as an analog of Proposition 4.5 in Roberts and Roepstorff (1969).

3. MINIMAL SUPERPOSITION PRINCIPLE AND **SECTORS**

Let (L, M) be a quantum logic and P be the set of all pure states contained in M. For $S \subset P$ and $a \in L$, let us write $S(a) = 0$ if $s(a) = 0$ for all $s \in S$. Let $\overline{S} = \{m \in P: S(a) = 0 \text{ imply } m(a) = 0\}$ (see Varadarajan, 1968; Gudder, 1970a, b; Berzi and Zecca, 1974). Gudder (1970b) introduced the following postulate (minimal superposition postulate, MSP): If S is any finite subset of P and $m \in \overline{S}$ is such that $m \notin \overline{Q}$ for any subset $Q \subseteq S$, then ${m, S_1}^{\frown} \cap \overline{S_2} \neq \emptyset$ for any $S_1, S_2 \subset P$ such that $S_1 \cap S_2 = 0$ and $S_1 \cup S_2 = S$.

Lemma 1. For any $S \subset P, \Lambda(S) \subset \overline{S}$.

Proof. Let $p, q \in \overline{S}$ and let $p(a) = 0$, $q(a) = 0$ imply $r(a) = 0, r \in P, a \in L$. Then $S(a) = 0$ imply $r(a) = 0$, i.e., $r \in \overline{S}$. From this it follows that \overline{S} is closed under superpositions. From $S \subset \overline{S}$ we get $\Lambda(S) \subset \Lambda(\overline{S}) = \overline{S}$.

> *Lemma 2.* If the MSP holds in (L, M) then $r \in \Lambda({p, q})$ implies $q \in \Lambda({r, p}), p \in \Lambda({r, q})$ for any mutually different $p, q, r \in P$.

Proof. As $\Lambda({p,q}) = {p,q}^-$ (Pulmannová, 1976), by the MSP we have that $A({r,p})\cap {q} \neq \emptyset$, i.e., $q \in A({r,p})$. Analogically we get $p \in$ $\Lambda({r,q}).$

> *Theorem 5.* If the MSP holds in (L, M) then $\Lambda(S) = \overline{S}$ for any finite subset $S \subset P$.

Proof. For any $s, p \in P$, $\Lambda({s,p}) = {s,p}^-$. We shall proceed by induction. Let $\Lambda({s_1, ..., s_k}) = {s_1, ..., s_k}$ for any $k \le n$ and for any ${s_1, ..., s_k}$ $\subset P$. Let $s \in \{s_1, \ldots, s_{n+1}\}^-$ be such that $s \notin S$ for any $S \subsetneq \{s_1, \ldots, s_{n+1}\}$. By

Quantum Logics 919

the MSP then there is a $p \in P, p \in \{s, s_{n+1}\}^- \cap \{s_1, \ldots, s_n\}^- = \Lambda(\{s, s_{n+1}\}) \cap$ $\Lambda({s_1, ..., s_n})$. Then $p \in \Lambda({s_1, ..., s_n}) \subset \Lambda({s_1, ..., s_{n+1}})$. By Lemma 2, s \in $A(\{p, s_{n+1}\})$, so that $s \in A(\{s_1, ..., s_{n+1}\})$. Now let $q \in \{s_1, ..., s_{n+1}\}$ be such that there is a subset $S \subset \{s_1, \ldots, s_{n+1}\}\$ such that $q \in \overline{S}$. Then $\overline{S} = \Lambda(S)$ $\subset \Lambda(\lbrace s_1,\ldots,s_{n+1}\rbrace)$ imply $q \in \Lambda(\lbrace s_1,\ldots,s_{n+1}\rbrace)$. Thus we obtain ${s_1, \ldots, s_{n+1}}$ $\subset \Lambda({s_1, \ldots, s_{n+1}})$. The converse implication follows from Lemma 1. Hence, $\Lambda(S) = \overline{S}$ for any finite $S \subset P$.

For $p, q \in P, p \neq q$, let us set $p \approx q$ if there is an $r \in P$ such that $r \in \Lambda(p,q)$, $r \neq p, r \neq q$. Let us set $p \approx p, p \in P$.

> *Theorem 6.* Let the MSP hold in the quantum logic (L, M) and let $\Lambda(\lbrace p,q,r \rbrace) \neq \Lambda(\lbrace p,q \rbrace) \cup \Lambda(\lbrace q,r \rbrace)$ for any distinct states $p,q,r \in P$ such that $p \approx q, q \approx r, r \notin \Lambda({p, q})$. Then \approx is an equivalence relation

Proof. We have only to show the transitivity. Let $p \approx q, q \approx r, p, q, r \in P$ be distinct states. If $r \in \Lambda({p,q})$ then $q \in \Lambda({r,p})$ by Lemma 2, which implies $r \approx p$. Let $r \notin \Lambda({p,q})$ and let $m \in \Lambda({p,q,r})$, $m \notin \Lambda({p,q})$, $m \notin$ $\Lambda(\lbrace q,r \rbrace)$. Clearly, $m \neq p, q, r$. If $m \in \Lambda(\lbrace p,r \rbrace)$ then $p \approx r$. If $m \notin \Lambda(\lbrace p,r \rbrace)$, then we get by the MSP that $\Lambda({m,q})\cap \Lambda({p,r})\neq\emptyset$. Let $s\in \Lambda({m,q})\cap$ $\Lambda({p,r})$. If $s = p$ then $p \in \Lambda({m,q})$ implies $m \in \Lambda({p,q})$, a contradiction. Thus $s \neq p$ and analogically $s \neq r$. Hence $p \approx r$.

The following theorem shows that the condition in Theorem 6 is also necessary.

> *Theorem 7.* Let the MSP hold in (L, M) and let \approx be an equivalence relation. Then $p \approx q, q \approx r$ and $\Lambda({p,q,r}) = \Lambda({p,q}) \cup$ $\Lambda(\lbrace q, r \rbrace)$ imply $r \in \Lambda(\lbrace p, q \rbrace)$ (p, q, r distinct states in P).

Proof. Let the MSP hold in (L, M) and let \approx be an equivalence relation. Let $p \approx q$ and $q \approx r$. Then there is an $m \in \Lambda({p,r})$, $m \neq p, m \neq r$. $\Lambda({p,r})\subset \Lambda({p,q,r})=\Lambda({p,q})\cup \Lambda({q,r})$ implies $m\in \Lambda({p,q})$ or $m\in$ $A({q,r})$. If $m \in \Lambda({p,q})$, $m \neq q$, then $q \in \Lambda({m,p})$. But $m \in \Lambda({p,r})$ implies that $\Lambda({m,p})\subset \Lambda({p,r})$, so that $q \in \Lambda({p,r})$, i.e., $r \in \Lambda({p,q})$. We get the same if $m=q$. If $m \in \Lambda(\lbrace q,r \rbrace)$ we get analogically that $r \in$ $\Lambda(\lbrace p,q \rbrace).$

> *Theorem 8.* If the suppositions of Theorem 6 hold, then P can be written as the union of sectors.

920 l:hllmannov~

Proof. We shall show that the equivalence classes P_{λ} of P by the relation \approx are sectors. (i) Let $p, q \in P, p \approx q$ and let $r \in \Lambda({p, q})$). If $r \neq p, q$ then $r \in \Lambda({p,q})$ implies $p \in \Lambda({r,q})$, i.e., $r \approx q$. From this it follows that $\Lambda(P_{\lambda}) = P_{\lambda}$. (ii) and (iii) from the definition of sectors are evident.

4. SUPERPOSITION PRINCIPLE IN PROJECTIVE LOGICS

An orthomodular σ lattice L is called a projective logic if the following conditions are satisfied (Varadarajan, 1968):

- (i) Given $a \neq 0$ in L, there is a point $x \le a$.
- (ii) If $a\neq 0$ in L is the lattice sum of a finite set of points then $L_{[0,a]} = \{b \in L : b \le a\}$ is a geometry of finite rank; we shall say that a is a finite element of L and write dim(a) for the dimension of $L_{[0,a]}$.
- (iii) If $x, a \in L, a\neq 0, 1$ and x is a point, then there are points $y, z \in L$ such that $y \leq a, z \leq a^{\perp}$ and $x \leq y \vee z$.
- (iv) There exists at least one $a \in L$ such that $4 \le \dim(a)$.

If L is projective and its lattice is complete, then every element a of L is the lattice sum of the points it contains. A projective logic with the property that any family of mutually disjoint points of L is at most countable (i.e., L is separable) is complete (Varadarajan, 1968).

Let *m* be a state on a logic L. Let us set $L_m = \{b \in L : m(b) = 1\}$. We shall say that *m* is supported if there is an element $a_m \n\t\in L$, $a_m \neq 0$ such that $L_m = \{ b \in L : b \ge a_m \}.$ The element a_m is called a support of the state m.

> *Theorem 9.* Let (L, M) be a quantum logic such that L is a separable projective logic. In addition, let the following condition be satisfied: $m(a) = m(b) = 0$ imply $m(a \vee b) = 0(a, b \in L, m \in P)$. Then the superposition principle holds on (L, M) .

Proof. First we show that any $s \in P$ is supported (see also Zierler, 1961; Bugajska and Bugajski, 1972). If $L_s^0 = \{a \in L : s(a) = 0\} = \{0\}$ then $L_s = \{1\}$. But then $L_s \subset L_m$ for any $m \in P$, which implies $s = m$, which is impossible. From this it follows that $L_s^0 \neq \{0\}$. Then there exists at least one maximal subset of mutually disjoint elements in L_s^0 (by the Zorn lemma) and this subset is at most countable. Let b be the supremum of this subset. Obviously *b* is a maximal element of L_s^0 . Let $a \in L_s^0$, then $s(a)$ $0, s(b)=0$ imply $s(a \vee b)=0$. From the maximality of b it follows that $a \vee b = b$, i.e., $a \le b$. Thus $L_s^0 = \{a \in L : a \le b\}$, i.e., $L_s = \{a \in L : b^{\perp} \le a\}$, that

Quantum Logics 921

is, b^{\perp} is the support of s. We show that b^{\perp} is a point. Let e be a point of L such that $e \le b^{\perp}$. Then there is a state $q \in P$ such that $q(e) = 1$. Let $a \in L_q$, then from $q(e) = 1, q(a) = 1$ it follows that $q(a \wedge e) = 1$, i.e., $e \le a$. Hence, $L_q = \{a \in L: e \leq a\}$. But then $L_s \subset L_q$ implies $s = q$, i.e., $b^{\perp} = e$. Now let $s_1, s_2 \in P$, $s_1 \neq s_2$. Then there are points e_1, e_2 such that $s_1(e_1) = 1$, $s_2(e_2) = 1$. As $L_{[0,e,\sqrt{\epsilon_2}]}$ is a geometry, there is a point $e_3 \in L, e_3 \neq e_1, e_2$ such that $e_3 \le e_1 \vee e_2$. Let $s_3 \in P$ be such that $s_3(e_3) = 1$. Let $a \in L$ be such that $s_1(a) = 1, s_2(a) = 1$. Then $e_1 \le a, e_2 \le a$ imply $e_3 \le e_1 \vee e_2 \le a$, i.e., $s_3(a) = 1$. Hence, $s_3 \in \Lambda(\{s_1,s_2\})$. Clearly, $s_3 \neq s_1, s_2$. Indeed, if $s_3 = s_1$ then $s_3(e_3) =$ $1, s_3(e_1) = 1$ imply $s_3(e_1 \wedge e_3) = 1$, so that $e_1 \wedge e_3 \neq 0$, i.e., $e_1 = e_3$, a contradiction. Hence, the superposition principle holds in (L, M) .

We note that in the case of a general projective logic (not necessarily separable) the superposition principle need not hold unrestrictedly if there are states in P with no supports.

> *Lemma 3.* Let (L,M) be a quantum logic such that L is a complete lattice and all states in P are supported. Let us denote by suppm the support of the state m. Then the following hold.

- (i) If $m \in P$, then supp m is a point in L.
- (ii) Given $x \in L$, $x \neq 0$, there is a point $a \in L$ such that $a \leq x$.
- (iii) Every element $x \in L$ is the lattice sum of points contained in it.
- (iv) $m(a_{\alpha}) = 1, \alpha \in A, A$ is any set, then $m(\wedge a_{\alpha}) = 1$.

Proof. (i) Let $x \in L$, $x \neq 0$ be such that $x \leq$ suppm. Then there is a state $m_1 \in P$ such that $m_1(x)=1$. From $m_1(\text{supp }m)=1$ it follows that $L_m \subset L_m$, i.e., $m = m_1$. Hence, $x = \text{supp } m$.

(ii) For $x\neq0$ there is an $m\in P$ such that $m(x)=1$, then supp $m\leq x$ and supp *m* is a point by (i).

(iii) Let $a \in L, a \neq 0$. For any $m \in P_a$, supp $m \le a$. Let $b \in L$ be such that supp $m \le b$ for any $m \in P_a$. Then $m(b)=1$ for any $m \in P_a$ imply that $P_a \subset P_b$ and from this it follows that $a \le b$. Hence, $a = \sqrt{\{\text{supp} m : m \in P_a\}}$. Now let $q \le a$ be a point. Then there is an $m \in P$ such that $m(q) = 1$. From supp $m \leq q$ it follows that supp $m = q$ and $q \leq a$ implies that $m \in P_q$. Hence, $a = \sqrt{q}$; $q \le a$, q is a point}.

(iv) $m(a_{\alpha}) = 1, \alpha \in A$ imply that supp $m \le a_{\alpha}, \alpha \in A$, i.e., supp $m \le \Lambda$ $\{a_{\alpha}: \alpha \in A\}$. Hence, $m(\bigwedge a_{\alpha}) = 1$.

Points $e_1, e_2 \in L$ are perspective if there is a point $e_3 \in L, e_3 \neq e_1, e_2$ such that $e_3 \leqslant e_1 \vee e_2$.

922 Plllmannova

Theorem 10. Let (L,M) be a quantum logic such that L is a complete lattice and all the states in P are supported. Then for any $m_1, m_2 \in P, m_1 \approx m_2$ if and only if supp m_1 and supp m_2 are perspective.

Proof. Let $m_1 \approx m_2$; then there is a state $m \in P$ such that $m \in P$ $\Lambda({m_1, m_2})$, $m \neq m_1, m_2$. From this it follows that supp $m_1 \leq a$, supp $m_2 \leq a$ imply $\text{supp } m \leq a(a \in L)$. Hence, $\text{supp } m \leq \text{supp } m_1 \vee \text{supp } m_2$. Now let supp m_1 and supp m_2 be perspective. Let $e \in L$ be a point such that $e \leqslant supp \, m_1 \vee supp \, m_2, e \neq supp \, m_1, supp \, m_2$. Let $m \in P$ be such that $m(e) = 1$. Clearly, supp $m = e$. If $a \in L$ is such that $m_1(a) = 1, m_2(a) = 1$, then supp m_1 $\leq a$, supp $m_2 \leq a$ imply supp $m \leq a$, i.e., $m(a) = 1$. Hence, $m \in \Lambda({m_1, m_2})$.

REFERENCES

Berzi, V., and Zecca, A. (1974). *Communications in Mathematical Physics,* 35, 93.

Bugajska, K., and Bugajski, S. (1972). *Bulletin de l'Academie Polonaise des Sciences, XX,* 231.

Dixmier, J. (1969). *Les algebres d'operateurs dans l" espace Hilbertien.* Gauthier-Villars, Paris.

Gudder, S. P. (1965). *Transactions of the American Mathematical Society*, 119, 428.

Gudder, S. P. (1970a). *Journal of Mathematical Physics,* 11, 1037.

Gudder, S. P. (1970b). *International Journal of Theoretical Physics,* 3, 99.

Pulmannová, S. (1976). *Communications in Mathematical Physics*, 49, 47.

Roberts, J. E., and Roepstorff, G. (1969). *Communications in Mathematical Physics,* 11, 321.

Varadarajan, V. S. (1962). *Communications in Pure and Applied Mathematics, XV,* 189.

Varadarajan, V. S. (1968). *Geometry of Quantum Theory.* Van Nostrand, Princeton, New Jersey.

Zierler, N. (1961). *Pacific Journal of Mathematics,* 11, 1151.